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In the recent years, emergence huge Edge-Cloud environments faces great challenges like the ever-increasing
energy demand, the extensive Internet of Things (IoT) devices adaptation, and the goals of efficiency and
reliability. Containers has become increasingly popular to encapsulate various services and container migration
among Edge-Cloud nodes may enable new use cases in various IoT domains. In this study, an efficient joint
VM and container consolidation solution is proposed for Edge-Cloud environment. The proposed method uses
the Auto-Encoder (AE) and TOPSIS modules for two stages of consolidation subproblems, namely, Joint VM
and Container Multi-criteria Migration Decision (AE-TOPSIS-JVCMMD) and Edge-Cloud Power SLA Aware (AE-
TOPSIS-ECPSA) for VM placement. The module extracts the contribution of different criteria and computes the
scores of all the alternatives. Combining the non-linear contribution learning ability of the AE algorithm and the
intelligent ranking of the TOPSIS algorithm, the proposed method successfully avoids the bias of conventional
multi-criteria approaches toward alternatives that have good evaluations in two or more dependent criteria.
The simulations conducted using the Cloudsim simulator confirm the effectiveness of the proposed policies,
demonstrating to 41.5%, 30.13%, 12.9%, 10.3%, 58.2% and 56.1% reductions in energy consumption, SLA
violation, response time, running cost, number of VM migrations, and number of container migrations,
respectively in comparison with state of the arts.

1. Introduction

In recent years, the rapid advancement of the Internet of Things
(IoT) has led to a significant increase in the number of IoT devices
and applications. Edge-Cloud computing has gained attention from
both academic and industrial communities as an appealing solution for
handling the data generated by IoT applications (Ghobaei-Arani et al.,
2020; Feng et al., 2022). Edge-Cloud computing enables the timely
execution of latency-sensitive tasks, thereby improving user experience.

The Container as a Service (CaaS) offers a new type of service,
distinct from traditional models, allowing applications to run in isolated
virtual environments while sharing the operating system kernel. Con-
tainerization provides advantages such as rapid start-up, high porta-
bility, and lightweight properties, making it a suitable solution for
managing the complexity of heterogeneous Edge nodes. Containerized
resource management frameworks facilitate the efficient allocation of
resources and IoT application workloads within a hybrid Edge-Cloud
computing environment (Wang et al., 2023a).

Virtualization-based consolidation is a highly effective method for
improving energy efficiency in Edge-Cloud environments. By utilizing
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live migration of VMs and containers, multiple VMs and containers can
be grouped onto a minimal set of physical resources, allowing the un-
used (idle) hosts to be powered down or put into sleep mode (Gholipour
et al.,, 2022). However, heterogeneous resources, dynamic resource
demands, and contradictory consolidation goals makes the resource
management problem in Edge-Cloud environment a challenging issue.
One potential contradictory goal of host consolidation is optimizing
resource utilization while minimizing latency. Consolidating hosts aims
to use resources more efficiently, but it may lead to increased latency
due to sharing resources among multiple VMs. Additionally, striving for
energy efficiency might inadvertently result in Service Level Agreement
(SLA) violations if the consolidation compromises the performance
of critical applications. Balancing these contradictory goals requires
careful optimization to ensure an efficient consolidation approach.

As resource demand fluctuates over time, consolidation strategies
might necessitate migrating some VMs or containers to a different host
to avoid overloading the available hardware resources (Maenhaut et al.,
2020). Previously, independent VM migration or container migration
was proposed in the literature. The authors in Gholipour et al. (2020)
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Table 1
Comparison of relevant studies across various parameters.
Work Method Edge/ VM Container Joint VM & Scalability ~Latent Optimization goals
Cloud Container space
Energy SLA-aware Cost Response time Co-Location

Beloglazov and Buyya PABFD X v X X v X 4 v X X X
(2012)
Horri et al. (2014) UMC X v X X v X 4 v X X X
Arianyan et al. (2015) TPSA X v X X v X v v X X v
Pham and Huh (2016) Cost/ v v X X X X v X v X X

Makespan

balance
Piraghaj et al. (2017) CORHS v X v X X X v X v X X
Fu et al. (2021) Nautilus v v X X X X v v X X v
Ma et al. (2020) LBJC 4 X v X X X X X X v/ X
Chen et al. (2018) First/Best fit X v X X v X v v X X v
Li and Hu (2019) DDQN X - X X X v v X X X X
Basu et al. (2019) Qlearning X v X X X v v X v X X
Mao et al. (2016) DRL X v X X X v X X X v X
Tuli et al. (2020) A3C-R2N2 v v X X X v v v v v X
Wu et al. (2016) MBFD X v X X X X 4 4 X X X
Jiang and Chen (2018)  SARA X v X X X X v v X X X
Lebre et al. (2018) VMPlaceS X v X X X X X v X X X
Khan et al. (2020) EPC X v v v X X v v v v X
Zakarya et al. (2022) CoLocateMe X X v X X X v v v v X
Gholipour et al. (2020) JVCMMD X v v v X v v v X X v
This work AE-TOPSIS- v/ 4 v v 4 4 v/ v v v v

JVCMMD

verified that joint VM and container consolidation (when containers are
running inside VMs) is more energy-efficient than consolidating of VMs
or containers, individually.

The standard VM consolidation problem in cloud data-centers is
divided into four main phases (Beloglazov and Buyya, 2012), namely,
overloaded host determination, underloaded host determination, VM
selection from over-utilized hosts for migration, and new placement
determination for migrating VMs. An effective resource allocation strat-
egy can reduce the number of required hosts, decrease energy costs,
and minimize SLA violations. Recent studies have increasingly utilized
the Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) as a multi-criteria decision-making algorithm to address one
or more phases of the consolidation problem (Arianyan et al., 2015;
Gholipour et al., 2020). However, most TOPSIS-based approaches often
assume that the criteria being evaluated are independent, which may
not hold true in Edge-Cloud environments. As a result, the outcomes
could be skewed in favor of options that perform well on two or more
interdependent criteria (Pelegrina et al., 2019).

This paper proposes a novel joint VM and container consolidation
solution designed for Edge-Cloud environment. Moreover, the Auto-
Encoder (AE) learning approach is utilized to extract the contribution
of the initial set of criteria and decorrelate them considering both
linear and nonlinear relationships of the decision criteria instead of
considering just linear relationships. Then using the reduced decision
matrix, the TOPSIS multi-criteria decision approach is used to rank and
select the best candidates. The main contributions of this paper are:

(1) Proposing a joint container and VM consolidation solution ap-
plicable to the complex Edge-Cloud environment.

(2) Proposing two multi-criteria decision making policies for migrat-
ing VMs/containers selection and placement based on TOPSIS
method that simultaneously optimizes energy consumption, re-
sponse time, cost, and SLA violations with minimum number of
VMs/containers migrations

(3) Learning a set of independent latent criteria from the observed

data using Auto-Encoder (AE) method, which can be used as an

alternative latent representation of the original decision matrix
for TOPSIS method.

Evaluating the impact of various consolidation approaches that

migrate VMs, containers or VMs plus containers (containers

running inside VMs) in Edge-Cloud environment on energy ef-
ficiency, cost, and performance metrics.

(4

—

This paper begins by reviewing related works in Section 2. Section 3
introduces the proposed system model. Section 4 presents the pro-
posed solution for joint VM and container resource management in
Edge-Cloud environment. Section 5 evaluates the effectiveness of our
proposed solutions using the Cloudsim simulator. Finally, Section 6
presents concluding remarks and suggests directions for future re-
search.

2. Related works

There is a wide area of research related to this work from different
aspects including Edge-Cloud computing, containerization, and con-
solidation problems. Table 1 summarizes the comparison of relevant
studies with our work across various parameters.

In the Edge-Cloud landscape, the requests from IoT devices can
be served by several nodes. Each request could be divided into a
set of tasks. The resource management problem determines an opti-
mal assignment of different tasks submitted to be executed on the
Edge/Cloud nodes in order to meet QoS requirements (Ghobaei-Arani
et al., 2020). Edge-Cloud resource management then might be formu-
lated to a multi-objective optimization (Ma et al., 2020; Tuli et al.,
2020; Pham and Huh, 2016; Fu et al., 2021) with minimization of
energy, costs, response-time, SLA violation and co-location as shown in
Table 1. Co-located VMs on the same host can face significant perfor-
mance drops, especially when they contend for the same resources (Fu
et al., 2021).

Resource management approaches might be classified according to
the domain subject to the optimization techniques into two general
groups that include heuristic and Machine Learning (ML) methods. In
ML-based resource management methods mostly a neural network with
many layers have deployed in learning high level features in a latent
space from large input spaces as indicated in 8th column of Table 1.

Heuristic methods have been extensively researched in the context
of cloud resource management and empirically demonstrated its scal-
ability for large number of tasks and hosts (Ma et al., 2020; Pham
and Huh, 2016; Wang et al., 2023b; Li et al., 2020; Fu et al., 2021).
The authors in Ma et al. (2020) have considered consolidation prob-
lem in Edge-Cloud environment and designed a Load Balancing Joint
Migration Cost (LBJC) minimization approach for container placement
that minimizes the latency impact of container migration while bal-
ancing the load of hosts. A two-stage heuristic resource management
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approach for the Edge-Cloud computing paradigm has been proposed
in Pham and Huh (2016). The first stage focuses on determining task
priority, while the second involves selecting the optimal node based
on Earliest Start Time and Earliest Finish Time criteria. The authors
in Zakarya et al. (2022) have presented energy, performance, cost,
and co-location efficient VM placement and consolidation strategies
for running multiple co-located workloads (CoLocateMe). The authors
in Lebre et al. (2018) have also examined different VM placement
and consolidation techniques by VMPlaceS as a dedicated simulation
framework using three types of schedulers: centralized, hierarchical
and distributed. The Modified Best Fit Decreasing (MBFD) method have
presented in Wu et al. (2016) for VM consolidation, taking into account
energy consumption and migration costs, specially performance loss
due to downtime. Authors in Jiang and Chen (2018) have proposed the
Self Adaptive Resource Allocation (SARA) algorithm which dynamically
allocates resources to VMs in an energy efficient manner.

Recent works have explored different ML techniques for dynamic
optimization of resource management systems (Soni and Kumar, 2022).
In a reinforcement learning (RL) setup, Q-tables or neural networks
are built from the actual measurements, and used to approximate
Q action-value function (Please refer to Gari et al. (2021) for more
information on RL-based methods). Deep learning based methods like
Deep Q Learning (DQN) (Li and Hu, 2019; Basu et al., 2019) or other
Deep Reinforcement Learning (DRL) establishments which use a neural
network with many layers have deployed in learning high level features
from large input spaces (Mao et al., 2016; Tuli et al., 2020). A resource
manager (Nautilus system) has been developed in Fu et al. (2021) that
determines the optimal resource allocation based on RL to capture the
contention behaviors in order to minimize co-location, SLA violation
and resources usage. A scheduler for Edge-Cloud environments has
been presented in Tuli et al. (2020) using Asynchronous-Advantage-
Actor-Critic learning based on Residual Recurrent Neural Network
(A3C-R2N2). The method considers all tasks and hosts to make schedul-
ing decisions and continuously adapt to the dynamics of the system.
However, the developed methods that train an end-to-end network with
fixed output layer structure, face problem of limited scalability or can
schedule for a fixed number of edge nodes and tasks.

In this paper, the proposed method combines heuristic and ML
techniques to take advantage of scalability and automated feature
learning. The Auto-Encoder (AE) neural network structure is used to
learn the contribution of input criteria in the latent feature space and a
heuristic-based method is proposed to address joint VM and container
consolidation problem in large scale Edge-Cloud environment.

As containers become more widely employed in cloud environ-
ments, it is important to consider containerized workloads. In cloud
computing research, various studies have explored the impact of con-
solidation policies on energy consumption, performance, and costs
for workloads running in different environments: VMs (Beloglazov
and Buyya, 2012; Arianyan et al., 2015), containers (Piraghaj et al.,
2017; Ma et al.,, 2020; Zakarya et al., 2022), or containers within
VMs (Gholipour et al., 2020; Khan et al., 2020). Three distinct consoli-
dation strategies can be evaluated: (i) VM-based — migrating only VMs;
(ii) container-based — migrating only containers; and (iii) joint VM and
container-based — migrating both containers and VMs. Each strategy (i
or ii) has the authority to independently decide on migrating VMs and
containers. However, in the context of (iii), a particular workload is
hosted on containers running on virtualised resources (inside VMs), and
a joint VM and container consolidation policy is used to migrate VMs
and containers in combination. Previous researches have primarily fo-
cused on VM consolidation and container consolidation, separately and
joint VM and container consolidation has rarely explored (Gholipour
et al., 2020; Khan et al., 2020).

The authors in Beloglazov and Buyya (2012) have introduced the
Power Aware Best Fit Decreasing (PABFD) algorithm for VM placement.
This algorithm has been designed to sort VMs in descending order based
on CPU utilization demand and assigns each VM to the host that results
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in the smallest increase in power consumption. Overloaded physical
machine detection and VM selection are dynamically carried out using
Local Regression (LR) and Minimum Migration Time (MMT) heuristics,
respectively.

In Arianyan et al. (2015), the authors have explored the VM consol-
idation problem, proposing multi-criteria algorithms for the two main
stages of standard VM consolidation (Beloglazov and Buyya, 2012):
identifying under-loaded hosts and VM placement. Specifically, they
have introduced the TOPSIS Power and SLA Aware Allocation (TPSA)
policy for VM placement. They have simulated the approach using the
CloudSim simulator to evaluate its effectiveness in reducing energy
consumption, VM migrations, and SLA violations. This method has
been later extended to address the joint consolidation of VMs and
containers (Gholipour et al., 2020).

The authors in Piraghaj et al. (2017) have tackled the consoli-
dation problem by modeling the CaaS environment and addressing
power optimization through the container CloudSim simulator. They
identified three key subproblems for consolidation: detecting over-
loaded and under-loaded hosts, selecting containers for migration,
and determining container placement. Their experimental results show
that the approach identifies over-loaded and under-loaded hosts using
thresholds of 70% and 80%, respectively combined with the Maximum
Usage (MU) algorithm for selecting the largest container to migrate and
their developed correlation host selection (CORHS) algorithm, performs
better than other algorithms.

A standard joint VM and container consolidation procedure has
been developed in Gholipour et al. (2020) that divides the cloud
resource management problem into seven sub-problems including (1,2)
detecting over-loaded/under-loaded hosts, (3) deciding whether mi-
grate VMs or containers by identifying which VMs should be migrated
from these hosts, (4) selecting VMs from the identified candidate VMs
for migration, (5) placing VMs on appropriate destination hosts, (6)
selecting containers for migration, and (7) placing containers on ap-
propriate destinations. The authors presented a policy named Joint VM
and Container Multi Criteria Migration Decision (JVCMMD) technique
for the third sub-problem. Moreover, in order to avoid co-location of
VMs that compete for similar resources on a specific host, the VMs with
the most correlation with other VMs in the same host were selected for
migration in order to decrease the probability of the host to become
overloaded by decreasing resource contention due to co-location.

Another joint VM and container consolidation approach has been
developed in Khan et al. (2020) that divides the cloud resource manage-
ment problem into six sub-problems including (1,2) over-loaded/under-
loaded host detection, (4,5) containers/VMs selection for migration,
(6,7) containers/VM placement. Moreover, this study presents a policy
named Energy and Performance Efficient consolidation (EPC) technique
for the 4th/5th sub-problem. The developed approach lacks the third
stage in comparison to Gholipour et al. (2020) that is a particular stage
to control candidate VMs/containers for migration and avoid repeated
migrations of VMs/containers.

However, the consolidation algorithms presented in Gholipour et al.
(2020) and Khan et al. (2020) are quite basic and fail to consider
the most efficient migration strategies concerning energy consump-
tion and performance degradation within a heterogeneous Edge-Cloud
environment. Moreover, their investigations is limited to certain cor-
related decision criteria. These works lack the non-linear contribution
extraction of the criteria which motivate us to perform this study.

3. Target system model

The target system model includes three important parts: the Edge-
Cloud infrastructure, users with various workloads, and the proposed
consolidation framework. An overall view of the system model is
depicted in Fig. 1. The consolidation part itself consists of the ‘local
manager’, which is executed on all nodes and the ‘global manager’,
which is executed on a central host. The numbers in the circles in Fig. 1
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Fig. 1. An overview of the target system model.

correspond to the 7 stages of the proposed consolidation approach in
Section 4.

Edge is a generic paradigm, which has many candidate architec-
tures. The spectrum of Edge architectures ranges from Fog Comput-
ing, Mobile Edge Computing (MEC), and Edge-Cloud to specialized
hardware like Field-Programmable Gate Arrays (FPGAs) (Xu et al.,
2020) and smartphones (Mateos et al., 2022). The targeted architecture
depends on specific use cases and requirements. For our scenarios
requiring resource management closer to end-users, Edge-Cloud might
be suitable. The system’s infrastructure consists of both resource-rich
and resource-limited nodes that vary significantly in parameters such
as compute power measured in Millions Instructions Per Second (MIPS)
and response times. These nodes support a variety of users running
different applications, which involve multiple heterogeneous VMs and
containers, leading to a dynamic and diverse workload on each host.
Edge devices which are closer to the users, offer much lower response
times but are constrained by limited computation capacity. Conversely,
cloud resources are farther from the users, resulting in higher response
times, but they are abundant in resources enhanced computational
capabilities, enabling execution of multiple tasks simultaneously.

The local manager exists in each active host and is consisted of five
main components that are introduced as follows:

+ Virtual Machine Controller (VMC)/Physical Machine Controller
(PMC):he VMC is a daemon within each VM that gathers resource
information, such as the number of running containers and re-
source utilization. Similarly, the PMC, located in each physical
machine (PM), collects data on resource usage, capacity, and the
number and types of VMs running on the PM.
Overload/Under-load detector: The component determines the
under-loaded/overloaded hosts using double threshold’s policy —
which uses a lower (20%) and an upper (80%) threshold values.
This information is sent to Joint VM/Container Multi-criteria
Migration Decider component in the Global Manager.

AE Contribution Extractor: Auto-Encoder (AE) can basically be
considered as a non-linear Principle Component Analysis (PCA)
using neural networks with auto-associative architecture. It in-
volve three main parts, namely encoder, latent layer, and decoder,

Journal of Network and Computer Applications 233 (2025) 104049

RC' vMcU' oLvM' VMM' NOC' VMS'
RC* VMCU* OLVM® VMM’ NOC* VMS®

AE-TOPSIS-JVCMMD:  ¢andidate
AE TOPSIS i—> Vms for

migration

X =

RC" VMCU" OLVM" VMM" NOC" VMS" ]

RT' CH' PI' AC' NV' RC' MD'

AE-TOPSIS-ECPSA Candid

Xpoper | KT P PI'ACT NVERCT MDY AE TOPSIS |—i—»hosas for VM
: . : : : . placement
RT" CH"™ PI" AC"™ NV" RC" MD" | i eeereeeseesseessessssesened
~TOPSIS mo

' dute_

Distance calculation of negative
and positive alternatives

Score computation

.... .

Fig. 2. A schematic diagram of Auto-Encoder (AE) and TOPSIS modules (bottom).
Both proposed AE-TOPSIS-JVCMMD and AE-TOPSIS-ECPSA policies take advantage of
AE and TOPSIS modules (top). A properly trained AE correctly reconstructs the input
while reducing the latent layer dimensionality. The Mean Square Error (MSE) of this
reconstruction / = MSE(x,y) = ZZ (x; — y,)* provides training loss function. In our
work the output of the latent space is used as TOPSIS input criteria.

whose encoding and decoding weights reach optimal values in
the Mean Square Error (MSE) sense. The architecture of the AE
Contribution Extractor module is depicted in Fig. 2. The encoder
compresses the input criteria into a compact latent layer. The
decoder brings the compressed latent section back into the form
of the original criteria. The output is then expected to be a
proper reconstruction of the input. Latent layer is a key com-
ponent of the AE and provides data compression to the input
with powerful feature extraction capabilities. The decoder section
can then be discarded, leaving the latent layer and its encoding
weights already able to approach non-linear PCA of input data.
The output of latent layer, Z ;¢ arap is used as the input criteria
of TOPSIS module of the proposed AE-TOPSIS-JVCMMD approach
in Section 4.1. The input criteria of AE, X, cppp, (listed in
Table 2) are provided by the VMC and PMC. The encoder function
O yecmmp Mmaps the original input data to the latent output,
Zyyemmp = QivemmpXyvemmp)-

Joint VM/Container Multi-criteria Migration Decider (JVCMMD):
The component determines the candidate VMs for migration using
the proposed AE-TOPSIS-JVCMMD approach in Section 4.1. It
enhances resource utilization by evenly spreading VMs across
hosts and reducing the number of active PMs. Migration priorities
are determined based on the latent layer criteria of AE Con-
tribution Extractor i.e. Z;, ¢y p, allowing VM instances to be
migrated from overloaded hosts. Moreover, VM instances can be
migrated from a lightly loaded host so those hosts can be turned
off, minimizing the total number of active hosts. When candidate
VMs for migration are found, the final migrating VMs among
candidate VMs are determined using MMT algorithm. JVCMMD
immediately informs the migration decisions to the VM Scheduler
when there is any VM migration.

The global manager operates on a distinct node that determines
the appropriate destinations for the selected containers and VMs to be
migrated. It consists of the following components:

» Resource Manager: The resource manager monitors information
on both PMs and VMs. It sends the collected decision criteria
(according to Table 3) to AE Contribution Extractor to extract
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Table 2
Considered criteria in the proposed AE-TOPSIS-JVCMMD policy.
No. Notation Criteria Description Benefit/Cost
1 RC Resource correlation Correlation between a VM’s resources and those of other VMs on the same host Benefit
2 VMCU VM CPU utilization The CPU utilization of a VM Benefit
3 OLVM Over-Load VM The total MIPS of containers hosted within a VM Benefit
4 VMM VM MIPS The computing capacity of a VM in MIPS Cost
5 NOC Number of container The number of containers available within a VM Benefit
6 VMS VM storage The storage capacity of a VM Cost

latent space criteria as the input of the TOPSIS sub-module of
VM Scheduler. Similarly, Resource Manager sends the collected
information to Container Scheduler.

AE Contribution Extractor: The general performance of this com-
ponent is similar to one in local manager. The output of la-
tent layer, Zpcps4 is used as the input criteria of TOPSIS mod-
ule of the proposed AE-TOPSIS-ECPSA approach in Section 4.2.
The input criteria of AE, Xpcpg4, (listed in Table 3) are pro-
vided by Physical Machine Controller (PMC). The encoder func-
tion Qpcpgs maps the original input data to the latent output,

Zicpsa = QecrsaXecpsa)

VM Scheduler: The VM Scheduler determines the placements of
VMs on the servers. The placement decisions are based on the
information available from the Resource Manager. The VM Sched-
uler applies the proposed AE-TOPSIS-ECPSA in Section 4.2 to find
a placement for each VM on a server. When the VM Scheduler
identifies a suitable placement, it notifies the PMC to start the
VM and update the resource data. If a VM cannot be placed
appropriately, It sends the details to the Container Scheduler.
Container Scheduler: The Container Scheduler is responsible for
deciding where to place containers on VMs. In the proposed
system, every task operates within a container. The CS commu-
nicates with the Resource Manager to gather information about
the available resources of each VM and applies the correlation
host selection (CORHS) policy for container placement. If the
containers correlation at the destination host is unavailable, the
least full host selection (LFHS) policy serves as a fallback option.
When the CS identifies a suitable placement, it informs the VMC
to start the container. If no existing VM has sufficient resources
to host the container, a new VM needs to be instantiated. To do
this, the CS requests the VMC to instantiate a new VM. Using data
from the PMC, the VMC determines a placement for the new VM,
instantiates the new VM, and updates the Resource Manager. The
VMC then launches the container on the newly instantiated VM.
Fig. 3 shows the sequence diagram for the proposed architecture.

The proposed method is the resource manager of a specific Edge-
Cloud environment which allocates VMs and containers to available
hosts based on the predefined goals. It also decides when and which
VMs or containers should be migrated from hosts. The details of the
proposed method is presented in Section 4.

4. Proposed joint VM and container consolidation for Edge-Cloud
environment

The primary limitation of most consolidation solutions in edge-
cloud environments is their lack of consideration for a combined con-
tainer and VM migration policy. To address this shortcoming, this paper
introduces a new approach for joint VM and container consolidation,
which divides the edge-cloud resource management process into seven
sub-problems (corresponding to the numbers in Fig. 1):

(1) Over-loaded host detection: The over-loaded hosts are deter-
mined using Local Regression (LR) policy (Beloglazov and Buyya,
2012).

(2) Under-loaded host detection: The under-loaded hosts are deter-
mined using Simple Method (SM) policy (Beloglazov and Buyya,
2012).

(3) Candidate VMs/containers determination for migration: The
candidate VMs for migration from over-loaded and under-loaded
hosts are identified using our proposed TOPSIS based Joint VM
and Container Multi-criteria Migration Decision (AE-TOPSIS-
JVCMMD) policy. The proposed AE-TOPSIS-JVCMMD takes ad-
vantage of AE module to extract the contribution of its input
criteria (Section 4.1).

(4) VM selection for migration: Among the candidate VMs, those se-
lected for migration are chosen based on the Minimum Migration
Time (MMT) policy (Beloglazov and Buyya, 2012).

(5) VM placement: New destination hosts for selected migrating
VMs are determined using our proposed Edge-Cloud Power SLA
Aware (AE-TOPSIS-ECPSA) policy that uses AE and TOPSIS mod-
ules to extracts the contribution of input criteria and computes
the scores of all the host, respectively (Section 4.2). The VMs
that were selected for migration are eliminated from the initial
candidate VM list and the list of remaining VMs that no suitable
destination host is found for them is built.

(6) Container selection for migration: The VMs that still require
migration but were not initially selected are handled, and the
containers hosted on these VMs are selected for migration using
the Maximum Usage (MU) policy (Piraghaj et al., 2017).

(7) Container placement: The new destinations for the chosen con-
tainers are determined using the Correlation Threshold Host
Selection Algorithm (CORHS), with the Least Full Host Selection
Algorithm (LFHS) serving as a fallback option (Piraghaj et al.,
2017).

More specifically, in this paper, two novel AE-TOPSIS-JVCMMD pol-
icy and AE-TOPSIS-ECPSA policy are proposed for the third and fourth
sub-problems, respectively. Our proposed consolidation procedure for
migration decision is shown in Algorithm 1. In the next subsections
we describe the AE-TOPSIS-JVCMMD and AE-TOPSIS-ECPSA policies
in detail.

4.1. AE-TOPSIS based Joint VM and Container Multi-criteria Migration
Decision (AE-TOPSIS-JVCMMD) policy

AE-TOPSIS-JVCMMD policy leverages the AE and TOPSIS mod-
ules as part of a multi-criteria algorithm, incorporating six criteria
outlined in Table 2 for its decision-making process. In other words,
AE-TOPSIS-JVCMMD is a multi-criteria decision-making method that
selects solutions from a limited set of options by minimizing the dis-
tance to the ideal positive point while maximizing the distance from
the ideal negative point. The criteria used in this approach can be either
benefit-based or cost-based. A higher value for benefit-type criteria or
a lower value for cost-type criteria brings the solution closer to the
optimal point. The negative of cost type criteria are hence considered as
the equivalent benefit one in the proposed AE-TOPSIS-JVCMMD policy.

AE-TOPSIS-JVCMMD computes the score of VMs so that the follow-
ing conditions exist in the answer:

(1) Resource correlation between the selected VM for migration and
other VMs in the same host should be the most: It increases the
probability of the host to become overloaded by increasing the
correlation between applications that utilize the same resources
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Fig. 3. Sequence diagram for the proposed consolidation approach.

Table 3
Considered criteria in the proposed AE-TOPSIS-ECPSA policy.
No. Notation Criteria Description Benefit/Cost
1 RT Response time Response time of Edge/Cloud nodes hosting VMs Cost
2 CH Cost of Hosts Deployment cost of Edge/Cloud hosts Cost
3 PI Power Increase The increase in power consumption when placing VMs on a host Cost
4 AC Available Capacity Remaining resource capacity of a host Benefit
5 NV Number of VMs Number of VMs running on a host Cost
6 RC Resource correlation Resource correlation between a VM and other VMs on the destination host Cost
7 MD Migration delay The delay caused by migrating VMs to different hosts Cost
on an oversubscribed host. In order to calculate correlation coef- (4) The VM chosen for migration should have the lowest computing
ficients, for each pair of VMs (including the VM in question and capacity (MIPS) possible: Opting for a VM with higher com-
f:ach other VM on the same host), Pearson correlation coefficient puting power increases the risk of running out of resources for
is callcutl.ated ffot1;1 th:, restt)li;lcv([e ugetlﬁe ﬁf t?; Vl\\//llsv[ and t}tlg a;eratlge hosting containers.
correlation of the targe with all other s on the host is . -
. get v L (5) The selected VM should have the highest number of containers:
then considered as a decision criterion. Choosi ha VM f ] . g he likelihood of
(2) CPU utilization of the selected VM should be the highest: Priori- 0osing suc % c')r n.ngratlon vre. u'ces the 1' el '00 o
tizing the migration of a VM with higher utilization reduces the resource contention, which in turn minimizes SLA violations. In
likelihood of resource shortages, and consequently, minimizes other words, VMs with the most containers are prioritized for
the risk of violation. migration in order to avoid the co-location of VMs that com-
(3) The selected VM is the most over-loaded one due to high re- pete for more resources on a specific host (decreasing resource
source usage of the containers it hosts: A VM is considered contention due to co-location).
over-loaded if the average computing capacity of the host, cal- (6) The chosen VM should have the minimum storage capacity

culated per processing elements of both the host and the VM
is lower than the total computing capacity utilized by all con-
tainers in MIPS. Migrating the over-loaded VM helps minimize
the risk of resource shortages on its host and potential SLA
violation.

possible : By the selecting a VM with the lowest storage capacity
(VMS), the migration overhead caused by storage transmission
is reduced.

These criteria are used to construct multi-criteria decision matrix,
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Algorithm 1 Proposed joint VM and containers consolidation for
Edge-Cloud environment

Input: List of all hosts, VMs, and containers
Output: Generate a migration map
Step 1: Identify over-utilized hosts using LR policy.
Step 2: Identify under-utilized hosts using SM policy.
for each over-utilized/under-utilized host do
Find candidate VMs for migration using the proposed
AE-TOPSIS-JVCMMD policy:
Make criteria matrix (Eq. (1)) for running VMs .
Extract contribution matrix using AE (Initialization: Eq.
(2)), Online updating: Eq. (3)).
Calculate score of VMs using TOPSIS (Eq. (4)).
Candidate high ranked VMs for migration.
Select VMs to migrate from the candidate list, using
MMT policy.
if VMs are selected then
Identify appropriate hosts for migrating VMs using
proposed AE-TOPSIS-ECPSA policy:
Make criteria matrix of Edges/Clouds (Eq. (5)).
Extract contribution matrix using AE (Initialization:
Eq. (6), Online updating: Eq. (7)).
Calculate score of hosts using TOPSIS (Eq. (8)).
Place VMs on the top-ranked hosts and include them
in the migration map.
Identify containers of migrating VMs for which no
suitable destination is found for them, using MU
policy.
Place containers using CORHS/LFHS policy and
include them in the migration map.
end if
end for
return Migration map

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

VMS!
VMS?

NocC!
NOC?

VMM!
VMM?

OLVM!
OLV M?

RC' vMcU!

RC? VMCU?

Xvemmp = . .
VMS"

@

where, n is the number of instantiated VMs. Before using Xy cararp
as input of TOPSIS approach, it is feed-forwarded to the AE network
as shown in Fig. 2. In practice, the AE network is trained by two
sequential steps of initialization and online updating of the parameters.
In the initialization step, the PCA method is applied to the matrix to
extract contributions (Seuret et al., 2017). Given a n X d input criteria
matrix (d = 6), some criteria are likely to be correlated, since they
are taken from the same VM. PCA leverages an orthogonal transfor-
mation to a new coordinate system, to get a relatively small number
of uncorrelated criteria, which are the principal components. The first
principle component indicates the direction of the maximum variance
and each subsequent principle component points to the direction of the
highest remaining variance, ensuring the orthogonality to all previous
components.

Using PCA for automated cloud management has been widely
studied in the context of anomaly detection, e.g., Du and Li (2017)
and Manimurugan (2021). To the best of our knowledge, there is no
prior work in adapting PCA-initialized AE for consolidation method
over Edge-Cloud environments.

In order to build the PCA model, eigenvalue decomposition is
performed on the covariance matrix, and a set of eigenvectors V =
(v{,Vv2,...,v,) is obtained, ordered by their eigenvalues. These eigen-
vectors define the new axes of the transformed coordinate system. The
first principal axis, v;, aligns with the direction of the greatest variance,

RC" VMCU" OLVM" VMM" NOC"
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while each subsequence principal axes points in the direction of the
next highest variance that is orthogonal to the preceding axes. The
corresponding eigenvalues are 4; > 4, > --- > 4; > 0.

The principal subspace is the space formed by the first & principal
axes in V, denoted as P, = [v,,...,v,], while the residual subspace is
the space spanned by the remaining axes, P, = [v,,,...,V,]. The cu-
mulative percent variance (CPV) method is used to determine the value
of k due to its simplicity and reliable performance (Li et Ial., 2000).
Specifically, for the first principal components, CPV (I) = %100%,
the value of k is selected as: k = argmin,(CPV (I) > 90%).

In summary, the proposed AE-TOPSIS-JVCMMD policy consists of
three steps:

1. Constructing multi-criteria decision matrix X, cppp from all
the criteria assigned to the candidates in time slot ¢ as shown in
Eq. (1),

2. Constructing latent space criteria matrix Z;, ¢y pp by training
AE:

+ Initialization: performing PCA by X, ¢y p and deter-
mining the first k principal components to make weighted
matrix
Zyycump = XvemmpPis 2)

where the weights are eigen vectors associated with prin-

cipal components P; = [v|, ..., v.].

« After initialization: feed-forwarding X,y cpmp to the AE
network
Zyycump = QrvemmpXyvemmp)- (3

3. Performing TOPSIS to acquire score for the ith candidate by the

Eq. (4),
[sk (i _ -2
ijl(zj zj)
Syyvemmp = PEE— — = 4)
i _ i _ =
VELE =P 2@ - )
where z{ represents an entry in the latent space matrix

Z;ycmmp» after being normalized by dividing each element by
the maximum value in its respective column. Moreover, z;f is the
ideal positive solution and z_ is the ideal negative solution. The
ideal positive solution corresponds to the maximum value of z;,
while the ideal negative solution corresponds to the minimum
value ofz; (G=12,....,kandi=1,2,...,n).

The intuition to use PCA-initialized AE as an contribution extractor
of each criterion, is that the target positive and negative ideals of
TOPSIS method are most likely calculated with some bias due to the
correlation between each dimension in the original space. Thus by
transforming the data matrix onto a new latent space, the original
coordinates are rotated in a way that the new positive and negative
ideals would be ideal solutions in latent space.

For instance, when the dimensionality d = 2, Fig. 4 illustrates this
scenario. In the left panel of Fig. 4, the CPU utilization (VMCU criterion
from Table 2) and storage (VMS criterion from Table 2) for a randomly
selected node and its trace from the Bitbrain dataset (Shen et al.,
2015) are shown to be strongly correlated. When the TOPSIS method is
applied to the latent space, the positive and negative ideal targets are
depicted in the right panel of Fig. 4. However, both ideal alternatives
illustrated in Fig. 4 (left panel) when the TOPSIS approach is applied
in the original observed data. It is clear that applying TOPSIS to the
original data does not produce the desired positive and negative ideals.
As a consequence, the distance measures are incorrectly calculated,
leading to a ranking of alternatives that differs from the intended one.
In other words, the original correlated space introduces bias into the
determination of the positive and negative ideals.
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Fig. 4. Graphical intuition behind latent space conversion of TOPSIS criteria in 2-
dimensional space.

For instance, when the dimensionality d = 2, Fig. 4 illustrates
this scenario. In the left panel of Fig. 4, the CPU utilization (VMCU
criterion from Table 2) and storage (VMS criterion from Table 2) for a
randomly selected node and its trace from the Bitbrain dataset (Shen
et al., 2015) are shown to be strongly correlated. When the TOPSIS
method is applied to the latent space, the positive and negative ideal
targets are depicted in the right panel of Fig. 4.

It is important to note that after initialization, the parameters in
the AE are iteratively updated in an online manner with the recently
released data using the back-propagate (BP) algorithm. The online
updating strategy allows the method to get aware of the latest Edge-
Cloud condition such as workload variability and resource availability
at the edge and cloud levels and revise its parameters accordingly.

4.2. AE-TOPSIS based Edge-Cloud Power SLA Aware (AE-TOPSIS-ECPSA)
policy

AE-TOPSIS-ECPSA policy leverages both AE and TOPSIS modules
as part of a multi-criteria algorithm, that takes into account seven
criteria outlined in Table 3 during its decision-making process. using
the TOPSIS module, The policy evaluates the scores of all potential
hosts for VM placements and selects the host with the highest score.
The criteria used in AE-TOPSIS-ECPSA policy can be classified as either
cost-based or benefit-based. The cost type criteria are hence converted
to the equivalent benefit type with negative sign in the proposed AE-
TOPSIS-ECPSA method. AE-TOPSIS-ECPSA assigns the highest rank to
a host that simultaneously satisfies the following conditions:

(1) The selected host should have the lowest response time: This
prioritizes choosing resource-limited edge nodes that are closer
to the user for handling medium to lightweight tasks.

(2) The deployment cost should be minimized for the selected host:
This favors selecting resource-rich cloud nodes with lower com-
puting cost for complex and resource-intensive tasks.

(3) The power consumption of allocating a VM should be minimized
for the selected host.

(4) The selected host should have the maximum available resources:
This increases the likelihood of allocating the necessary re-
sources for VMs, thereby reducing the SLA violation rate.
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(5) The selected host should have the fewest number of VMs: This
minimizes competition for shared resources among VMs, which
in turn reduces SLA violations.

(6) The resource correlation between the VM to be allocated and
the existing VMs on the selected host should be minimized:
This decreases the chance of the host becoming overloaded by
reducing the correlation between applications that use the same
resources on an oversubscribed host.

(7) The migration delay of the VM to the selected host should be
minimized: This reduces SLA violations during the migration
process and enables smarter decisions that decreases the number
of VM migrations and avoid those with long delays.

The proposed AE-TOPSIS-ECPSA policy consists of three steps:

1. Constructing multi-criteria decision matrix Xycpg, from all the
criteria assigned to the candidate hosts in time slot 7,

RT' CH' PI' Ac' Nv' Rc' MD!
RT? CH? PI* AC? NV? RC*® MD?
Xpcpsa = : : : : : : : ’
RT™ CH™ PI"™ AC™ NV™ RC"™ MD"
5

where, m is the number of edge and cloud hosts. Before using
Xgcpsa as input of TOPSIS approach, it is feed-forwarded to
the AE network as shown in Fig. 2. In practice, the AE network
is trained by two sequential steps of initialization and online
updating of the parameters.

2. Constructing latent space criteria matrix by training AE:

« Initialization: performing PCA by Xy ps4 and determining
the first k principal components to make weighted matrix

Zgcpsa = XpcpsaPis (6)

where the weights are eigen vectors associated with prin-

cipal components p; = [vy, ..., 0]

« After initialization: feed-forwarding X ¢ pg,4 to the AE net-
work
Zpcpsa = QrcpsaXecpsa)- @

3. Performing TOPSIS to acquire score for the ith candidate by the

Eq. (8),
V ZJ]';I(C; -

\/Zjl'c:l(q —Grs \/Z/l';l(cj{ -

(3

Spcpsa =

where Cij represents an entry in the latent space matrix Zpcpgy,
after being normalized by dividing each element by the maxi-
mum value in its respective column. Moreover, ¢ is the ideal
positive solution and {7 is the ideal negative solution. The ideal
positive solution corresponds to the maximum value of z', while
the ideal negative solution corresponds to the minimum value of
(=12 kandi=12, . m).

More precisely, the proposed AE-TOPSIS-ECPSA method is a multi-
criteria approach for Edge-Cloud environment which considers re-
sponse time and cost of the Edge/Cloud nodes to guarantee smart deci-
sions by assigning medium to lightweight tasks to resource-constrained
edge nodes closer to the user and resource-hungry tasks to cloud nodes
with less running cost.

5. Performance evaluation
In this section, the experimental set up and dataset is described and

the performance of the proposed methods is evaluated and compared
with the state-of-the-art heuristic and ML based algorithms.
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Table 4
Configuration of hosts.
Nodes Host CPU Cores Freq. RAM Net BW Disk BW  Cost Power consumption for different loads (W)
Model (Hz) (GB) (GB/s) (MB/s) Model
($/hr)
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Edee Hitachi HA Intel i3 2 1800 8 0.1 76 0.11 243 30.4 337 36.6 39.6 422 456 51.8 557 60.8 63.2
8¢ 8000 3.0 GHz
DEPO Race Intel i5 4 2000 16 1 49 0.23 832 882 943 101 107 112 117 120 124 128 131
X340H 3.2 GHz
Dell Intel Xeon 32 2000 48 1 49 3.47 110 149 167 188 218 237 268 307 358 414 446
Cloud
PowerEdge 2.6 GHz
R820
Dell Intel Xeon 64 2660 64 1.5 1024 6.94 210 371 449 522 589 647 705 802 924 1071 1229
PowerEdge 2.3 GHz
6320

5.1. Experiment setup

Given that our target system operates in a heterogeneous edge-
cloud computing environment, it is crucial to account for the varying
computational capabilities of both edge and cloud hosts. In our infras-
tructure setup, an Edge-Cloud computing infrastructure is simulated
that includes a data center with 800 heterogeneous physical machines.
This consists of 200 Hitachi HA 8000, 200 DEPO Race X340H, 200 Dell
PowerEdge R820, and 200 IDell PowerEdge C6320. Characteristics of
these machines are outlined in Table 4, and their power consumptions
is calculated using the data presented there, following the Edge and
Cloud nodes in Tuli et al. (2020). The response time of edge-loud nodes
is set 1 ms, while for cloud nodes it is set to 10 ms based on the
empirical studies of FogBus edge-cloud framework (Tuli et al., 2019).

We utilize an extended version of Cloudsim toolkit (Calheiros et al.,
2011) as our simulation platform, along with the complete infrastruc-
ture it provides (Tuli et al., 2020). This toolkit allows us to conduct
repeatable experiments on large-scale virtualized Edge-Cloud environ-
ment, taking into account factors such as response time, cost and
power consumption of edge nodes. Furthermore, CloudSim is an open-
source, modular and extensible toolkit that can model the mobility
of IoT devices by simulating bandwidth fluctuations and delayed task
execution in cloud environments. Our implementation interacts with
machine learning software for input pre-processing and AE conversion
and new modules are created to simulate PCA and TOPSIS methods.

In the simulation environment, each task in the Edge-Cloud setup
is represented by a container that runs until it finishes execution.
These Containers are assigned to VMs on physical servers. While each
container handles only one task, a VM can host multiple containers.

The dynamic workloads are generated using the real-world open-
source Bitbrain’s dataset (Shen et al., 2015). This dataset includes real
traces of resource consumption metrics from over a thousand VMs on
Bitbrain infrastructure with logs recorded at 5-min intervals, detailing
requested CPU cores, CPU usage (in MIPS) and RAM characteristics.
Moreover, Google dataset (Reiss et al., 2011) collected from a con-
tainerized platform and containing task’s runtimes and priorities, is
used to select container runtimes. By combining Bitbrain and Google
datasets, a mixed workloads s created that exhibit different utilization
pattern but similar runtimes. This prompts the consolidation module to
handle migrations differently, depending on the hosts’ utilization levels.
The VM types used align with Amazon EC2 instance types, while the
container types are modeled after Google machine types.

During the simulations, container are launched dynamically when
a request matches task arrival times from the Google cluster dataset.
The container runtimes corresponds t the tasks execution times from
Google’s cluster data. Containers are assigned to VMs, with each VM
capable of hosting multiple containers. Once a container completes its
task or consumes fewer resources than provisioned, opportunities for
consolidation arise.

5.2. Comparison with the state-of-the-art heuristic methods

In this section, our proposed policy is evaluated by comparing it
with seven other approaches proposed in the state of the arts, includ-
ing Arianyan et al. (2015), Piraghaj et al. (2017), Ma et al. (2020), Khan
et al. (2020) and Gholipour et al. (2020). Approaches are numbered
from one to eight, as depicted in the first column of Table 5. The
proposed solution is Approach 8. In the last seven columns of Table 5,
an abbreviation name of the policies used for each sub-problem (stage)
of the corresponding consolidation approach is reported.

Approach 1 indicates the four stage VM consolidation solution
using the optimal algorithms suggested in Arianyan et al. (2015).
This includes LR policy for identifying over-loaded hosts, TOPSIS-
Available Capacity and Number of VM and migration Delay (TACND)
for detecting under-loaded hosts, MMT policy for VM selection, and
TOPSIS power and SLA aware allocation (TPSA) for determining new
destinations for migrating VMs.

Approach 2 indicates the four stage container consolidation solution
using the optimal algorithms suggested in Piraghaj et al. (2017). This
includes static threshold (Static THR) policy with 70% threshold for
identifying under-loaded host and 80% threshold for identifying over-
loaded hosts, Maximum Usage (MU) for migrating containers selection,
and correlation host selection policy (CORHS) for container placement.
If the correlation of the containers at the destination host is not
available, the least full host selection (LFHS) policy is used as an
alternative.

Approach 3 indicates container migration-based decision-making
approach (Ma et al., 2020) including static threshold policy for both
resource utilization and load diversity between hosts for determination
of over-loaded hosts, maximum usage (MU) for selection of the con-
tainers that should be migrated, and Load Balancing Joint Migration
Cost (LBJC) minimization for container placement that minimizes the
latency impact of container migration while balancing the load of hosts.

Approach 4 indicates an extension of approach 1 in which the pro-
posed AE-TOPSIS-ECPSA method is used in the fourth VM placement
stage. This approach is designed in order to investigate the effect of the
proposed AE-TOPSIS-ECPSA policy on consolidation frameworks that
are based on only VM migrations.

Approach 5 indicates the six stage consolidation solution allowing
both VM and container migrations (Khan et al., 2020) including static
threshold policy (Static THR) with 70% threshold for determination of
under-loaded host and 80% threshold for determination of over-loaded
hosts, Energy and Performance Efficient consolidation (EPC) policy for
selection of the containers/VMs for migration, and Modified Best Fit
Decreasing (MBFD) for container/VM placement. EPC policy uses the
product of energy consumption and performance (reciprocal of the
execution time) as a rating metric to prioritize those containers/VMs
that enhance energy and performance more.

Approach 6 indicates the seven stage joint VM and container con-
solidation solution, as proposed in Gholipour et al. (2020). It includes
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Table 5
The characteristics of approaches.
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Host
overload

Host
underload

Approach
Num.

Approach description

Candidate
VM/container

VM
placement

Container
placement

Container
selection

VM selection

for migration

1 VM migration in Cloud LR TACND -
environment (Arianyan

et al., 2015)

MMT TPSA - -

2 Container migration in Static-THR Static-THR -
Cloud environment

(Piraghaj et al., 2017)

MU CORHS, LFHS

3 Container migration in - Static-THR -
Edge-Cloud environment

(Ma et al., 2020)

MU LBJC

4 VM migration in LR TACND -
Edge-Cloud environment
with AE-TOPSIS based

VM placement

MMT AE-TOPSIS- - -

ECPSA

5 Joint VM and container Static-THR Static-THR -
migration in Cloud
environment (Khan et al.,

2020)

EPC MBFD EPC MBFD

6 Joint VM and container LR SM
migration in Cloud
environment (Gholipour

et al., 2020)

JVCMMD

MMT MU TPSA CORHS, LFHS

7 Joint VM and container LR SM
migration in Edge-Cloud

environment with

AE-TOPSIS based VM

placement

JVCMMD

MMT MU AE-TOPSIS-

ECPSA

CORHS, LFHS

8 Joint VM and container LR SM
migration in Edge-Cloud

environment with

AE-TOPSIS based VM

selection and placement

AE-TOPSIS-
JVCMMD

MMT MU AE-TOPSIS-

ECPSA

CORHS, LFHS

LR for identifying over-loaded hosts, SM for detecting under-loaded
hosts, MU policy for selecting containers to migrate, MMT policy for
identifying VMs to migrate, JVCMMD policy to decide whether to
migrate VMs or containers, CORHS policy for container placement, with
LFHS as an its alternative when VM-host correlation data is unavailable,
and TPSA policy for determining new placements for VMs.

Approach 7 indicates an extension of approach 6 in which the
proposed AE-TOPSIS-ECPSA method is used in the seventh stage to find
new destinations for the VMs that should be migrated. This approach is
designed in order to investigate the effect of the proposed AE-TOPSIS-
ECPSA policy on consolidation frameworks that are based on joint VM
and container migrations.

Approach 8 indicates our proposed joint VM and container con-
solidation solution in this paper similar to scenario 6 in which the
proposed AE-TOPSIS-JVMCMMD and AE-TOPSIS-ECPSA policies are
used in fifth and seventh stage for migrating VM selection and place-
ment, respectively. The proposed AE-TOPSIS-ECPSA adapts previous
TPSA method to Edge-Cloud environment by considering extra cri-
teria including response time and cost of Edge/Cloud nodes. Both
proposed AE-TOPSIS-ECPSA and AE-TOPSIS-JVMCMMD methods ex-
ploit AE and TOPSIS modules to extract the nonlinear contribution of
decision criteria and compute the scores of all the alternatives.

Ten experiments are performed separately for the ten days (Bit-
brain+Google dataset) and the results of eight approaches for energy
consumption, SLAV, response time, running cost, number of VM migra-
tions and number of container migrations are reported in Table 6. The
experiment is then repeated for different workload types from Google’s
cluster dataset (Reiss et al., 2011) and the results of all experiments
corresponding to three workload types W0, W4, and W9 which belong

10

to tasks of three different priorities (0, 4, 9) are shown graphically in
Fig. 5.

To determine the statistical significance of the results, we perform a
two-sample t-test with a significance level of 0.05. The null hypothesis
states that the performance measure of all other approaches is less than
or equal to that of the proposed method (Approach 8). The one-tailed
p-values from the tests are presented in the experimental results in
Table 6.

The results of our proposed solution is compared with the best
previous ones in three categories which are based on either only
VM migrations (Approaches 1 and 4), only container migrations (Ap-
proaches 2 and 3) or joint VM and container migration (Approaches
4 to 8). It can be inferred from Table 6 that Approaches 4 and 7 as
extensions of Approaches 1 and 6 using the proposed AE-TOPSIS-ECPSA
method, show superior performance in comparison to original methods.
Moreover, it can be inferred from Table 6 that adopting our proposed
approach (Approach 8) leads to 47%, 63%, 16%, 17.9%, and 62.5%,
decrease in energy consumption, SLA violation, response time, cost,
and the number of VM migrations, respectively, when compared to the
best previous method based solely on VM migrations (Approach 1). Al-
though, approach 4 in Table 6 (as an extension of Approach 1 using the
proposed AE-TOPSIS-ECPSA method) shows a negligible less median
cost than the proposed method (approach 8), the standard deviations
and p-value of t-test indicate no significant difference between medians
and the cost of the two methods is then comparable.

Also, it can be inferred from Table 6 that adopting our proposed
approach (Approach 8) results in 56.9%, 67.3%, 18.6%, 31.25%, 9.65%
decrease in energy consumption, SLA violation, response time, cost,
and the number of container migrations, respectively, when compared
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Table 6

Performance comparison between the proposed method (Approach 8) and seven other heuristic consolidation solutions. The median performance
and corresponding standard deviation are reported (One-tailed p-values from two sample t-tests, testing the null hypothesis that the performance
metrics of Approach 8 exceeds that of the other approaches are provided in parenthesis).

Approach Energy Response time Cost (US $) SLAV # VM migration # container

num. consumption (ms) (%) migration (%)
(x10 kW)

1 764.96 + 51 8.8+0.6 7125 + 452 0.0138 +0.001 2.25+0.14 0+0 (0.0000)
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

2 934.22 + 63 9.1+£05 8505 + 561 0.0156 + 0.001 0 54+0.34
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

3 826.22 + 58 8.9+05 8125 +481 0.0156 +0.001 0 4.7+0.32
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

4 661.56 + 42 7.8+0.5 5640 + 373 0.0112 £ 0.001 2.07+£0.13 0+0 (0.0000)
(0.0000) (0.0000) (0.002) (0.0000) (0.0000)

5 740.32 £ 45 82+06 6740 + 434 0.011 +0.001 2+0.13 (0.0000) 4.42+0.29
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

6 688.66 + 45 8.5+0.6 6523 + 434 0.0073 £ 0.001 2.02+0.12 4.18 £0.27
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
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to the best previous methods based solely on container migrations
(Approach 2 and Approach 3).

Furthermore, the results in Table 6 show that adoption of our pro-
posed approach (Approach 8) leads to 41.5%, 30.13%, 12.9%, 10.3%,
58.2% and 56.1% decrease in energy consumption, SLA violation,
response time, cost, number of VM migrations, and number of con-
tainer migrations, respectively, in comparison with the best previous
approach based on joint VM and container migrations (Approach 5 and
Approach 6).

From Fig. 5, it can be seen that for all Monitoring/Console work-
loads (WO0), short-running workloads (W4), and long-running work-
loads (W9) the proposed method shows superior performance in com-
parison to other approaches. Workloads W4 are characterized by their
quick execution times and frequent start/stop cycles. Consolidation
approaches reduce energy consumption by optimizing the placement
of these tasks to minimize the number of active nodes. Although,
inaccurate prediction of runtime in approach 5 potentially increases its
total number of migrations, our optimal resource management strategy
can mitigate this effect to maintain number of migrations while min-
imizing energy usage. Workloads W9 require consistent performance
over extended periods. Consolidation for these tasks requires balancing
energy efficiency with performance guarantees. The proposed approach
successfully consolidate these tasks in a way that avoid performance
degradation without very excessive migrations in comparison to other
approaches.

So, the obtained results validate the applicability of our proposed
approach for consolidation in Edge-Cloud environment. This obser-
vation can be described by the fact that our proposed AE-TOPSIS-
ECPSA policy includes extra criteria including response time and cost
of Edge/Cloud nodes in comparison to the previous TPSA method. It
ensures to make smart decisions by assigning resource-hungry tasks
to resource-abundant cloud nodes and medium to lightweight tasks to
resource-constrained edge nodes closer to the user. Moreover, our pro-
posed joint VM and container consolidation solution takes advantage
of the AE and TOPSIS modules to extract the nonlinear contribution of
decision criteria in both proposed AE-TOPSIS-ECPSA and AE-TOPSIS-
JVCMMD policies. It successfully trades off between our goals, includ-
ing energy consumption, cost, response time, SLA violation and the
number of migrations.

5.3. Comparison with the state-of-the-art ML-based methods

In this section the performance of our proposed model is compared
with the results of ML-based methods reported in Tuli et al. (2020),
namely

1. DDQN: Double variant of standard Deep Q-Network similar to
the experiment in literature (Basu et al., 2019; Li and Hu, 2019).

2. DRL (REINFORCE): A deep reinforcement learning method using
policy gradient and a fully connected neural network (Mao et al.,
2016).

3. An asynchronous policy gradient reinforcement learning ap-
proach known as Asynchronous Advantage Actor Critic which
utilizes a Residual Recurrent Neural Network (A3C-R2N2) (Tuli
et al., 2020).

The graphs of DDQN and REINFORCE and A3C-R2N2 in Fig. 6 are
reproduced using the results reported in Tuli et al. (2020). It is impor-
tant to note that the above three methods only consider VM migrations.
In order to be able to compare the results obtained by the proposed
method with the ones obtained by other ML-based methods, the results
of AE-TOPSIS-ECPCA (approach 4 in Table 5), as a simplified version of
the proposed method that only considers VM migration is also reported.
The last bar of Fig. 6 represents the results of the proposed joint
VM and container migration method (approach 8 in Table 5). The
results are obtained in an experiment similar to one reported in Tuli
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et al. (2020) and the metrics are computed exactly as reported in it.
Settings of the methods allowing VM migration alone include a one-
to-one allocation from tasks to VMs and when the allocated task is
completed, the corresponding VM is discarded (Tuli et al., 2020). For
the last method setting, each task represent a container that runs until
its execution is completed. Containers are allocated to VMs and each
VM can host more than one container (task) with similar runtime to
other methods. In all studied methods, opportunities for consolidation
are created when container/VM finishes the allocated task, or task
utilizes the provisioned resources less.

Fig. 6(a)(c) shows that the lowest cost and energy consumption are
made by the proposed AE-TOPSIS-JVCMMD method and AE-TOPSIS-
ECPSA approach, as a simplified version of AE-TOPSIS-JVCMMD with-
out container migration capability in this paper. This is due to their
novel structure which allows simultaneous Edge-Cloud environment
sensing (via power and cost of edge nodes) and non-linear contribution
capturing of input criteria.

By investigating Fig. 6(b)(d), the proposed AE-TOPSIS-ECPSA ap-
proach shows a negligible more mean response time and SLA violations
than A3C-R2N2, but overlapping error bars indicate no significant
difference between means and the performance of the two methods
is then comparable. Moreover, the SLA violation and the response
time in the proposed AE-TOPSIS-JVCMMD method are significantly
less than all other ML-based methods. Also, as seen in Fig. 6(e), the
proposed model achieves the highest number of completed tasks. Since
the frequency and duration of migrations significantly impact task
response time, Fig. 6(f) show how the proposed model attains the
best metrics by minimizing the number of VM migrations. This can
be explained by the fact that our proposed joint VM and container
consolidation solution employs AE-TOPSIS-JVCMMD policy to decide
whether to migrate VMs or containers. Moreover, AE-TOPSIS-JVCMMD
policy leverages both VM and container migration to consolidate VMs,
ensuring that if no suitable host is found for the VMs selected for
migration, their containers are migrated instead, leading to a significant
improvements in results.

Moreover, the developed methods that train an end-to-end network
with fixed output layer structure, face problem of limited scalability or
can schedule for a fixed number of edge nodes and tasks.

5.4. Complexity and scalability

The complexity of the proposed method depends on multiple tasks.
The maximum time complexity of TOPSIS algorithm is O(nk) which
results from the calculation of attribute normalization and weighting.
The complexity of PCA is O(dn2+d3), where the two terms correspond
to covariance matrix computation and eigen-value decomposition, re-
spectively. As PCA is only used for the first initialization phase and then
Autoencoders (AE) are utilized to extract input criteria contributions,
and their forward pass and backpropagation steps can be ignored
since they are executed on Graphics Processing Units (GPUs). For N
scheduling intervals, the overall time complexity is O(nkN), making the
computational cost similar to that of machine learning-based methods.

6. Concluding remarks and future directions

This paper proposes an efficient consolidation of VM and containers
in edge-cloud environment defined by a variety of virtualization tech-
nologies, resource heterogeneity, and varying response times between
devices in the Edge and Cloud layers. Previous research overlooks
these distinctions between edge and cloud devices and neglects the
interdependence of decision criteria, which leads to a biased preference
for options that perform well in two or more related criteria.

More specifically, this paper focuses on the standard seven-phase
joint VM and consolidation solution and proposes two multi-criteria
decision making policies for migrating VMs/containers selection and
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placement, namely AE-TOPSIS-JVCMMD and AE-TOPSIS-ECPSA in the
fifth and the seventh phases, respectively.

The proposed AE-TOPSIS-ECPSA method is the customized multi-
criteria approach for Edge-Cloud environment which considers extra
criteria, namely response time and cost of the Edge/Cloud nodes
to guarantee smart decisions by assigning resource-hungry tasks to
resource-abundant cloud nodes and lightweight tasks to resource-
constrained edge nodes closer to the user. Moreover, both proposed
AE-TOPSIS-ECPSA and AE-TOPSIS-JVCMMD policies takes advantage
of the AE-TOPSIS module to extract the nonlinear contribution of
decision criteria and avoid the bias in the calculation of the ideal
solutions due to the correlation between criteria.

Experimental results show that adoption of our solution results in
41.5%, 30.13%, 12.9%, 10.3%, 58.2% and 56.1% decrease in energy
consumption, SLA violation, response time, cost, number of VM migra-
tions, and number of container migrations, respectively, in comparison
with the standard joint VM and container consolidation approach. It
successfully makes trade-off between the main goals, including energy
consumption, SLA violation, and the number of migrations.

As part of future work, we plan to integrate the proposed algorithms
with Kubernetes (Ellingwood et al., 2016) and its extensions for the
Edge-Cloud environments (Cappos et al., 2018), thanks to Kubernetes
which natively supports replacing the default scheduler of each cluster
with a custom one. Our framework allows the clusters to receive
consolidation decisions from a centralized control plane in order to
make in-cluster scheduling, pod autoscaling, and cluster autoscaling
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decisions. Another research direction is considering other variants of
AE nonlinear contribution extraction, namely regularized or variational
AEs rather than standard structure.
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